# METHOD OF INCREASING THE EFFICIENCY OF THE WATER SUPPLY NETWORK DUE TO ITS ZONING

## Authors

• Olha Matviienko Kharkіv National University of Radio Electronics
• Polina Spichak Kharkіv National University of Radio Electronics

## Keywords:

zoning; water supply network; stochastic model; pressure regulator; excess pressure

## Abstract

The goal of the work is to use a stochastic model of quasi-stationary modes of water supply network to reduce excess pressure in the water supply network by establishing pressure regulators at the entrances to the selected zones. The subject of research in the article is the optimization of the structure of water supply network by zoning. The article discusses the task of optimal zoning of water supply networks, which consists of two subtasks: allocation in the water supply network of isolated zones of nodes with excess pressure exceeding a given value; calculation of the parameters of pressure regulators installed at the entrances to the selected zones. A method based on the breadth-first search method is proposed for zone selection. The deterministic equivalent of this problem is solved using the Newton and Nelder-Mead methods. As a result of solving this problem, we obtain the minimum required values of the pressures stabilized at the outlets of the regulators and the maximum allowable values of the flow rates through them. To determine the minimum and maximum values of the ranges of flow rates and pressures at the inlets and outlets of the regulator, the forecast of the maximum and minimum water consumption by all categories of consumers in the selected zone is carried out and the problem of optimal load distribution between the pressure regulators is solved. As a result, we obtain a range of changes in the optimal flow rates through the regulator and the values of pressure stabilized at the output of the regulator. Based on this information, the type of regulators is determined that provides the necessary ranges of pressure changes at the inlets and outlets of the regulators for the minimum and maximum predicted costs through the regulator and the minimum allowable pressure at its inlet. The following results were obtained: calculations show that, using zoning and installation of pressure regulators at the inlets to isolated zones of the water supply network of the structure under consideration, it is possible to reduce the mathematical expectation of the total excess pressure in the network by 21%. Conclusions: the paper proposes a mathematical model for the problem of optimal zoning of the water supply network, based on a stochastic model of quasi-stationary modes of its operation, and a method for solving this problem. A computational experiment carried out for a water supply network of a given structure showed that as a result of installing pressure regulators at the entrances to the selected zones, it is possible to increase the efficiency of its operation.

### Downloads

Download data is not yet available.

## Author Biographies

### Olha Matviienko, Kharkіv National University of Radio Electronics

PhD (Engineering Sciences), Associate Professor

### Polina Spichak, Kharkіv National University of Radio Electronics

студентка Харківський національний університет радіоелектроніки

## References

Список літератури

Тевяшев А. Д., Матвиенко О. И. Стохастическая модель и метод зонирования водопроводных сетей. Восточно-Европейский журнал передовых технологий. 2014. Vol 1 (67). C. 17–24.

Perelman L. S., Allen M., Preis A., Iqbal M., Whittle A. J. Automated Sub-Zoning of Water Distribution Systems. Environmental Modelling & Software. 2015. № 65. P. 1–14. DOI: https://doi.org/10.1016/j.envsoft.2014.11.025

Nardo A. D., Natale M. D., Santonastaso G. F., Venticinque S. Graph Partitioning for Automatic Sectorization of a Water Distribution System. 2011. 841.

Nardo A.D., Natale M.D., Giudicianni C. Weighted Spectral Clustering for Water Distribution Network Partitioning. Appl Netw Sci. 2017. Vol 2. 19 р.

Diao K., Jung D., Farmani R., Fu G., Butler D., Lansey K. Modular interdependency analysis for water distribution systems. Water Research. 2021. № 201. 117320. DOI: https://doi.org/10.1016/j.watres.2021.117320

Zheng F., Zecchin A. C., Simpson A. R. A decomposition and multi-stage optimization approach applied to the optimization of water distribution systems with multiple supply sources. Water Resources Research. 2013. № 49. P. 1–20. DOI: https://doi.org/10.1029/2012WR013160

Diao K., Zhou Y., Rauch W. Automated Creation of District Metered Area Boundaries in Water Distribution Systems. Journal of Water Resources Planning and Management. March/april 2013. P. 184–190. DOI: https://doi.org/10.1061/(ASCE)WR.1943-5452.0000247

Matviienko О., Manchynska N. Method for Calculation of Dispersions of Dependent Variables of a Stochastic Model of Quasi-Stationary Operating Modes of the Main Water Pipeline. Innovative Technologies and Scientific Solutions for Industries / Mathematical Modeling & Computational Methods. 2022. No. 4 (22). Р. 58–69. DOI: https://doi.org/10.30837/itssi.2022.22.058

Tevyashev A., Matviyenko O., Nikitenko G. Construction of a Stochastic Model for a Water Supply Network with Hidden Leaks and a Method for Detecting and Calculating the Leaks. Eastern-European Journal of Enterprise Technologies. 2019. Vol. 6/4 (102). P. 29–38. DOI: https://doi.org/10.15587/1729-4061.2019.186157

Тевяшев А. Д., Козыренко С. И., Непочатова В. Д. Метод построения модели квазистационарных режимов работы водопроводных сетей с утечками. Восточно-Европейский журнал передовых технологий. 2010. №9 (44). С. 9–12. DOI: https://doi.org/10.15587/1729-4061.2010.2738

Самойленко Н. И., Гавриленко И. А., Сенчук Т. С. Разработка моделей упорядочивания ребер графа трубопроводной распределительной сети. Восточно-Европейский журнал передовых технологий. 2015. №4 (75). С. 21–25. DOI: https://doi.org/10.15587/1729-4061.2015.42811

Безкоровайний В. В., Березовський Г. В. Оцінка властивостей технологічних систем із використанням нечітких множин. Сучасний стан наукових досліджень та технологій в промисловості №1 (1). 2017. С. 14–20. DOI: https://doi.org/10.30837/2522-9818.2017.1.014

Безкоровайний В. В. Параметричний синтез моделей багатокритеріального оцінювання технологічних систем. Сучасний стан наукових досліджень та технологій в промисловості №2 (2). 2017. С. 5–11. DOI: https://doi.org/10.30837/2522-9818.2017.2.005

Давідіч Ю. О., Галкін А. С., Давідіч Н. В., Галкіна О. П. Оцінка величини енергетичних витрат кінцевих споживачів логістичної системи в процесі освоєння матеріального потоку. Сучасний стан наукових досліджень та технологій в промисловості №2 (2). 2018. С. 5–11. DOI: https://doi.org/10.30837/2522-9818.2018.4.005

Elhay S., Deuerlein J., Olivier Piller O., Simpson A.R. Graph Partitioning in the Analysis of Pressure Dependent Water Distribution Systems. Journal of Water Resources Planning and Management. 2018. №144 (4). DOI: https://doi.org/10.1061/(ASCE)WR.1943-5452.0000896

References

Tevyashev, A. D., Matvienko, O. I. (2014), "Stochastic Model and Method of Zoning of Water Supply Networks", Eastern-European Journal of Enterprise Technologies, Vol 1 (67), Р. 17–24.

Perelman, L. S., Allen, M., Preis, A., Iqbal, M., Whittle, A. J. (2015), "Automated Sub-Zoning of Water Distribution Systems", Environmental Modelling & Software, Vol. 65, P. 1–14. DOI: https://doi.org/10.1016/j.envsoft.2014.11.025

Nardo, A. D., Natale, M. D., Santonastaso, G. F., Venticinque, S. (2011), Graph Partitioning for Automatic Sectorization of a Water Distribution System, 841 p.

Nardo, A.D., Natale, M.D., Giudicianni, C. (2017), "Weighted Spectral Clustering for Water Distribution Network Partitioning", Appl Netw Sci, Vol. 2, 19 р.

Diao, K., Jung, D., Farmani, R., Fu, G., Butler, D., Lansey, K. (2021), "Modular Interdependency Analysis for Water Distribution Systems", Water Research, Vol. 201, 117320. DOI: https://doi.org/10.1016/j.watres.2021.117320

Zheng, F., Zecchin, A. C., Simpson, A. R. (2013), "A Decomposition and Multi-Stage Optimization Approach Applied to the Optimization of Water Distribution Systems with Multiple Supply Sources", Water Resources Research, Vol. 49, P. 1–20. DOI: https://doi.org/10.1029/2012WR013160

Diao, K., Zhou, Y., Rauch, W. (2013), "Automated Creation of District Metered Area Boundaries in Water Distribution Systems", Journal of Water Resources Planning and Management, march/april 2013, P. 184–190. DOI: https://doi.org/10.1061/(ASCE)WR.1943-5452.0000247

Matviienko, O., Manchynska, N. (2022), "Method for Calculation of Dispersions of Dependent Variables of a Stochastic Model of Quasi-Stationary Operating Modes of the Main Water Pipeline", Innovative Technologies and Scientific Solutions for Industries / Mathematical Modeling & Computational Methods, No. 4 (22), Р. 58–69. DOI: https://doi.org/10.30837/itssi.2022.22.058

Tevyashev, A., Matviyenko, O., Nikitenko, G. (2019), "Construction of a Stochastic Model for a Water Supply Network with Hidden Leaks and a Method for Detecting and Calculating the Leaks", Eastern-European Journal of Enterprise Technologies, Vol. 6/4 ( 102 ), P. 29–38. DOI: https://doi.org/10.15587/1729-4061.2019.186157

Tevyashev, A. D., Kozyrenko, S. I., Nepochatova, V. D. (2010), "Method for constructing a model of quasi-stationary modes of operation of water supply networks with leaks" ["Metod postroeniya modeli kvazistatsionarnykh rezhimov raboty vodoprovodnykh setey s utechkami"], Eastern-European Journal of Enterprise Technologies, No. 9 (44), P. 9–12. DOI: https://doi.org/10.15587/1729-4061.2010.2738

Samoylenko, N. I., Gavrilenko, I. A., Senchuk, T. S. (2015), "Development of mathematical models for ordering the edges of the pipeline distribution network graph" ["Razrabotka matematicheskikh modeley uporyadochivaniya reber grafa truboprovodnoy raspredelitel'noy seti"], Eastern-European Journal of Enterprise Technologies, No. 4 (75), P. 21–25. DOI: https://doi.org/10.15587/1729-4061.2015.42811

Bezkorovayniy, V. V., Berezovs'kiy, G. V. (2017), "Evaluation of the properties of technological systems using fuzzy sets" ["Otsinka vlastyvostey tekhnolohichnykh system iz vykorystannyam nechitkykh mnozhyn"], The current state of scientific research and technology in industry, No. 1 (1), P. 14–20. DOI: https://doi.org/10.30837/2522-9818.2017.1.014

Bezkorovayniy, V. V. (2017), "Parametric synthesis of models of multi-criteria assessment of technological systems" ["Parametrychnyy syntez modeley bahatokryterial'noho otsinyuvannya tekhnolohichnykh system"], The current state of scientific research and technology in industry, No. 2 (2), P. 5–11. DOI: https://doi.org/10.30837/2522-9818.2017.2.005

Davіdіch, Yu. O., Galkіn, A. S., Davіdіch, N. V., Galkіna, O. P. (2018), "Estimation of energy costs of end users of the logistics system in the process of mastering the material flow" ["Otsinka velychyny enerhetychnykh vytrat kintsevykh spozhyvachiv lohistychnoyi systemy v protsesi osvoyennya material'noho potoku"], The current state of scientific research and technology in industry, No. 2 (2), P. 5–11. DOI: https://doi.org/10.30837/2522-9818.2018.4.005

Elhay, S., Deuerlein, J., Piller, O., Simpson, A. R. (2018), "Graph Partitioning in the Analysis of Pressure Dependent Water Distribution Systems", Journal of Water Resources Planning and Management, No. 144 (4). DOI: https://doi.org/10.1061/(ASCE)WR.1943-5452.0000896

2023-04-21

## How to Cite

Матвієнко, О. and Спичак, П. (2023) “METHOD OF INCREASING THE EFFICIENCY OF THE WATER SUPPLY NETWORK DUE TO ITS ZONING”, INNOVATIVE TECHNOLOGIES AND SCIENTIFIC SOLUTIONS FOR INDUSTRIES, (1 (23), pp. 83–95. doi: 10.30837/ITSSI.2023.23.083.

## Section

INFORMATION TECHNOLOGY